3.15 \(\int \cos ^2(c+d x) (a+a \cos (c+d x))^2 \, dx\)

Optimal. Leaf size=87 \[ -\frac{2 a^2 \sin ^3(c+d x)}{3 d}+\frac{2 a^2 \sin (c+d x)}{d}+\frac{a^2 \sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac{7 a^2 \sin (c+d x) \cos (c+d x)}{8 d}+\frac{7 a^2 x}{8} \]

[Out]

(7*a^2*x)/8 + (2*a^2*Sin[c + d*x])/d + (7*a^2*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (a^2*Cos[c + d*x]^3*Sin[c + d
*x])/(4*d) - (2*a^2*Sin[c + d*x]^3)/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0974391, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2757, 2635, 8, 2633} \[ -\frac{2 a^2 \sin ^3(c+d x)}{3 d}+\frac{2 a^2 \sin (c+d x)}{d}+\frac{a^2 \sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac{7 a^2 \sin (c+d x) \cos (c+d x)}{8 d}+\frac{7 a^2 x}{8} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + a*Cos[c + d*x])^2,x]

[Out]

(7*a^2*x)/8 + (2*a^2*Sin[c + d*x])/d + (7*a^2*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (a^2*Cos[c + d*x]^3*Sin[c + d
*x])/(4*d) - (2*a^2*Sin[c + d*x]^3)/(3*d)

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rubi steps

\begin{align*} \int \cos ^2(c+d x) (a+a \cos (c+d x))^2 \, dx &=\int \left (a^2 \cos ^2(c+d x)+2 a^2 \cos ^3(c+d x)+a^2 \cos ^4(c+d x)\right ) \, dx\\ &=a^2 \int \cos ^2(c+d x) \, dx+a^2 \int \cos ^4(c+d x) \, dx+\left (2 a^2\right ) \int \cos ^3(c+d x) \, dx\\ &=\frac{a^2 \cos (c+d x) \sin (c+d x)}{2 d}+\frac{a^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac{1}{2} a^2 \int 1 \, dx+\frac{1}{4} \left (3 a^2\right ) \int \cos ^2(c+d x) \, dx-\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (c+d x)\right )}{d}\\ &=\frac{a^2 x}{2}+\frac{2 a^2 \sin (c+d x)}{d}+\frac{7 a^2 \cos (c+d x) \sin (c+d x)}{8 d}+\frac{a^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac{2 a^2 \sin ^3(c+d x)}{3 d}+\frac{1}{8} \left (3 a^2\right ) \int 1 \, dx\\ &=\frac{7 a^2 x}{8}+\frac{2 a^2 \sin (c+d x)}{d}+\frac{7 a^2 \cos (c+d x) \sin (c+d x)}{8 d}+\frac{a^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac{2 a^2 \sin ^3(c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.119793, size = 53, normalized size = 0.61 \[ \frac{a^2 (144 \sin (c+d x)+48 \sin (2 (c+d x))+16 \sin (3 (c+d x))+3 \sin (4 (c+d x))+84 d x)}{96 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + a*Cos[c + d*x])^2,x]

[Out]

(a^2*(84*d*x + 144*Sin[c + d*x] + 48*Sin[2*(c + d*x)] + 16*Sin[3*(c + d*x)] + 3*Sin[4*(c + d*x)]))/(96*d)

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 90, normalized size = 1. \begin{align*}{\frac{1}{d} \left ({a}^{2} \left ({\frac{\sin \left ( dx+c \right ) }{4} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{3}+{\frac{3\,\cos \left ( dx+c \right ) }{2}} \right ) }+{\frac{3\,dx}{8}}+{\frac{3\,c}{8}} \right ) +{\frac{2\,{a}^{2} \left ( 2+ \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) \sin \left ( dx+c \right ) }{3}}+{a}^{2} \left ({\frac{\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2}}+{\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+cos(d*x+c)*a)^2,x)

[Out]

1/d*(a^2*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c)+2/3*a^2*(2+cos(d*x+c)^2)*sin(d*x+c)+a^2*
(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]  time = 1.10975, size = 112, normalized size = 1.29 \begin{align*} -\frac{64 \,{\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} a^{2} - 3 \,{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a^{2} - 24 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{2}}{96 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/96*(64*(sin(d*x + c)^3 - 3*sin(d*x + c))*a^2 - 3*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*a^
2 - 24*(2*d*x + 2*c + sin(2*d*x + 2*c))*a^2)/d

________________________________________________________________________________________

Fricas [A]  time = 1.68364, size = 154, normalized size = 1.77 \begin{align*} \frac{21 \, a^{2} d x +{\left (6 \, a^{2} \cos \left (d x + c\right )^{3} + 16 \, a^{2} \cos \left (d x + c\right )^{2} + 21 \, a^{2} \cos \left (d x + c\right ) + 32 \, a^{2}\right )} \sin \left (d x + c\right )}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/24*(21*a^2*d*x + (6*a^2*cos(d*x + c)^3 + 16*a^2*cos(d*x + c)^2 + 21*a^2*cos(d*x + c) + 32*a^2)*sin(d*x + c))
/d

________________________________________________________________________________________

Sympy [A]  time = 1.27101, size = 211, normalized size = 2.43 \begin{align*} \begin{cases} \frac{3 a^{2} x \sin ^{4}{\left (c + d x \right )}}{8} + \frac{3 a^{2} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac{a^{2} x \sin ^{2}{\left (c + d x \right )}}{2} + \frac{3 a^{2} x \cos ^{4}{\left (c + d x \right )}}{8} + \frac{a^{2} x \cos ^{2}{\left (c + d x \right )}}{2} + \frac{3 a^{2} \sin ^{3}{\left (c + d x \right )} \cos{\left (c + d x \right )}}{8 d} + \frac{4 a^{2} \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac{5 a^{2} \sin{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} + \frac{2 a^{2} \sin{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac{a^{2} \sin{\left (c + d x \right )} \cos{\left (c + d x \right )}}{2 d} & \text{for}\: d \neq 0 \\x \left (a \cos{\left (c \right )} + a\right )^{2} \cos ^{2}{\left (c \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+a*cos(d*x+c))**2,x)

[Out]

Piecewise((3*a**2*x*sin(c + d*x)**4/8 + 3*a**2*x*sin(c + d*x)**2*cos(c + d*x)**2/4 + a**2*x*sin(c + d*x)**2/2
+ 3*a**2*x*cos(c + d*x)**4/8 + a**2*x*cos(c + d*x)**2/2 + 3*a**2*sin(c + d*x)**3*cos(c + d*x)/(8*d) + 4*a**2*s
in(c + d*x)**3/(3*d) + 5*a**2*sin(c + d*x)*cos(c + d*x)**3/(8*d) + 2*a**2*sin(c + d*x)*cos(c + d*x)**2/d + a**
2*sin(c + d*x)*cos(c + d*x)/(2*d), Ne(d, 0)), (x*(a*cos(c) + a)**2*cos(c)**2, True))

________________________________________________________________________________________

Giac [A]  time = 1.32465, size = 97, normalized size = 1.11 \begin{align*} \frac{7}{8} \, a^{2} x + \frac{a^{2} \sin \left (4 \, d x + 4 \, c\right )}{32 \, d} + \frac{a^{2} \sin \left (3 \, d x + 3 \, c\right )}{6 \, d} + \frac{a^{2} \sin \left (2 \, d x + 2 \, c\right )}{2 \, d} + \frac{3 \, a^{2} \sin \left (d x + c\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

7/8*a^2*x + 1/32*a^2*sin(4*d*x + 4*c)/d + 1/6*a^2*sin(3*d*x + 3*c)/d + 1/2*a^2*sin(2*d*x + 2*c)/d + 3/2*a^2*si
n(d*x + c)/d